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synopsis 
For a crosslinked polymer with a uniform molecular weight distribution we derive ex- 

pressions for the amount soluble after any amount of crosslink cleavage or chain scission. 
Two closed-form results are obtained. One is an approximate form based on the formal- 
ism of Charlesby and is usable for most needs. The other, based on a degradation dis- 
tribution from Montroll and Simha, is exact but rather more cumbersome. We compare 
numerical results from each approach. 

INTRODUCTION 

Wool and other keratins contain a number of intermolecular crosslinks 
along each protein chain. This crosslink density accounts for the extreme 
insolubility of keratin in ordinary solvents. To obtain usable amounts of 
soluble keratin proteins for physical-chemical characterization, some pri- 
mary bonds must first be broken-preferably only those which form the 
disulfide crosslinks. In  practice, however, a certain amount of main- 
chain scission almost always occurs which can obscure the characterization 
of the protein extract. By taking into account the details of the solubiliza- 
tion process we not only can avoid many pitfalls in interpreting such ex- 
periments, but also obtain considerable new information at  the same time. 

This paper is the first of a series that explores crosslinking in keratins as 
it, affects the interpretation of various degradation experiments. In this 
one (designated I), we will derive closed-form expressions for the solubility 
of a keratin-like solid after specified amounts of crosslink cleavage and 
chain scission have occurred. The second paper, 11,' will discuss the sulfur 
composition to be expected in the soluble fraction arid in the residue follow- 
ing various kinds of degradation. In the third paper, III,* the results of 
I and I1 will be applied to experimental data for acid hydrolysis of keratiris 
in the absence of crosslink cleavage. The final paper of this group, IV13 
will contain a discussion of experimental data for the thermal cleavage 
of disulfide crosslinks with a minimum of main chain scission. In prepara- 
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tion are a discussion of reduction and oxidation experiments, and an appli- 
cation of crosslinking theory to fractional precipitation experiments with 
proteins. 

THEORY 

Two general assumptions are made throughout this work which are 
justified a posteriori and which define the “model” to be studied. They 
are: (a) even though keratins may have more than one component, each 
of these components behaves independently and has, initially, a uniform 
(monodisperse) distribution of molecular weights ; (b)  main-chain scission 
and crosslink cleavage are random processes. Although assumption ( b )  is 
known to be untrue in detail, it is quite reasonable that chain breakage 
appears to be random, owing to the scattered distribution of various amino 
acids. Although we may omit assumption (a) without undue strain, the 
mathematical dficulties encountered in relaxing assumption (b)  are formi- 
dable. In I11 we will discuss the effect of assuming an initially random 
distribution of molecular weights, and in IV the effect of assuming that the 
components are intercrosslinked (nonindependent) . 

Assumption (b)  permits us to consider the processes of main-chain 
scission and simultaneous crosslink cleavage serially. In  its initial state 
the keratin component consists of A0 molecules, each with U monomer 
units (amino acid residues). A fraction Q of the total number of monomer 
units, All is engaged in intermolecular (disulfide) crosslinks. For purposes 
of calculation we consider the following sequence of events. The uncross- 
linked molecules of uniform initial length are first broken at  random to 
provide a new distribution. The extent of this degradation is defined by 
P ,  the fr‘action of breakable main-chain bonds that have been cleaved. 
The molecules are then crosslinked at  random until a fraction Q of monomer 
units is engaged in intermolecular crosslinking. Finally, from knowledge 
of the molecular weight distribution and Q, the amount of soluble material 
(sol) and residue (gel) is calculated. 

There are at least two methods of derivation which yield closed-form 
results for this problem. The first involves the straightforward applica- 
tion of a formalism set forth by Charlesby.‘ It yields an approximate 
result, relying on U being much greater than unity and Q being much less, 
and is simple to use, since Q and U occur together as the product QU = 6. 
In the second method we use an expression by Montroll and Simha5 for 
the molecular-weight distribution following random degradation of uni- 
form. This result is fitted into Charlesby’s formalism for calculation of 
the soluble fraction via the fraction of sterile crosslinks. The final closed- 
form expression is exact but rather more cumbersome to use, since Q and 
U are now separate. 

We will give both derivations, marking points in the first at which 
approximations are introduced, and then show numerical comparisons 
between the resulting expressions. 
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Approximate Derivation 
For an initially uniform distribution of A .  molecules, the ith moment is 

defined as 

A ,  = A0 Ui  (1) 

If fracture of a molecule is allowed to occur a t  any residue, then the change 
in moments in the fractured system is 

dA'JdP = [(i - l ) / ( i  + 1)]A',+ I (2) 
where the primes refer to the fractured system and P is the fracture density 
(the fraction of possible sites that are broken), defined as 

P = (A'o - &)/(A1 - Ao) (3) 
Equation (2) is an approximation depending for validity on U being large. 

By use of a Maclaurin expansion, A', can be written as 

A', = A ,  + P (dA',/dP)p& + (P2 /2! )  ( d z A ' ~ / d P z ) p ~  + . . . . (4) 

Using eq. (2), we can express the derivatives in the general form 

d"A',/dP" = (-1)" [(i - 1) i/(i + n - l ) ( i  + n)]A'i+" (5 )  

Putting this into eq. (4) and condensing the notation, we have 

A', = C ( - l ) n  [i(i - l ) / ( i  + n) (i + 12 - l ) ]  (P"/n!) A,, (6) 
n = O  

Using eq. (1) for A ,  in eq. (6) gives 

A 'I = AoUi (i - 1)i C (-PU>"/[(i + n)(i + n - l)n!] (7) 
n=O 

Equation (7) represents Charlesby's approximation for the distribution of 
moments resulting when an initially uniform distribution is randomly 
fractured. When an arbitrary distribution is crosslinked partially, the 
approximate gel fraction G is given also by Charlesby as 

G = (l/A'l) C [(QG)"-'/(i - l ) ! ]  A ' I ( - ~ ) ~  (8) 
i = 2  

Although we will not repeat the derivation here, the approximation in eq. 
(8) arises mainly from the omission of terms of the form (QG)i-lA,, where 
j < i. For every large U and small Q (light crosslinking) these terms 
vanish. 

Combining eqs. (7) and (8) we obtain 

(9) 
(-PU)" i(i - 1) C G = - - C  AOU (-QUG)"-' 

A', i = 2  (i - l ) !  n = O  (i + n)(i + n - l )n!  

Since there has been no change in the number of residues in the entire 
syst,em, A'I = AI .  We may also replace A1 by AoU, and define a new 
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quantity 6 = QU as the number of crosslinks per molecule based on no- 
fmcture conditions. With these simplifications, eq. (9) becomes 

(-6G)i-' (- PU)" 
G = - C  i(i - 1) c (10) 

i = 2  (i - l ) !  n=O (i + n)(i + n - l )n!  

After considerable manipulation, eq. (10) can be put into the following 
closed form : 

[ l  + (2PU/6G)] [ l  + (PU/6G) ]  - (2PU/6'G2) 
11 + (PU!6G)13 

G =  

- [1 + (PU/6G) - (2PU/62G2) 1 exp { - (6G + PU) 
(11) [1 + (PU/6G)ls 

The transcendental nature of the dependent variable G makes immediate 
use of this expression difficult, so that in the long run we must resort to 
numerical solutions. These will be presented later when the exact deriva- 
tion has been described. 

By expanding eq. (10) or (11) for small P, we obtain 

. .  - ( - 6G)i - 1 (-cSG)~-' i - 1 G = - C  + P U C  
;=z (i - l ) !  i = 2  (i - l ) !  i + 1 

The two sums in eq. (12) may be evaluated directly: 

G = 1 - exp { -6G) - (PU/62G2) 

X [2 - (S2G2 + 26G + 2) exp { -6G) ] - . . . (13) 

When there is no crosslink cleavage, 6 is constant and the initial gel 
fraction is given by 

Go = 1 - exp { -6Go] (14) 

Combining eqs. (13) and (14) we have for this case 

G = Go - (PU/62G02)[2 - (62Goz + 26Go + 2) (1 - Go)] - . . . (15) 

Since the solubility of a keratin in its original condition is usually nil, we 
may set Go g 1, and obtain from eq. (15) 

G g 1 - (2PU/6*) + . . . (16) 

For a given 6 it is sometimes useful to know at what point in the deg- 
This is easily found 

Designating the critical value of 

(lea) 

radation the material becomes completely soluble. 
by evaluating eq. (11) for vanishing G. 
P U  as X, we find 

~2 = 26(e-X + x - 1) 

For large 6 this is, approximately, 

x g 26[1 - (1/26)] 
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Exact Derivation 

Montroll and Simha5 have derived the following number distributions 
which occur after random scission of initially uniform molecules : 

N(u)  = AoP(1 - P)"-"2 + (U - 1 - u ) P ]  

N ( U )  = Ao(1 - P)'-l 
(17) 

(18) 

Now, following Charlesby if we allow this distribution to be cross- 
linked until a fraction Q of monomers is engaged in intermolecular crosslink- 
ing, then the number of molecules with u monomers, of which C are cross- 
linked, will be 

nc(u) = N(u)(l - Q)"-CQCu!/(u - C)!C! 

nc(U) = N(U)(l - Q ) ~ - ~ Q ~ u ! / ( u  - C)!C!  
(19) 

(20) 

The total number of crosslinks is QAl. Of these, a fraction t (C)  is 
carried by molecules which have C crosslinks to them: 

The sterile coefficient So is defined as the probability that a given crosslink 
is not connected to the gel through other crosslinks. Then 

71 

so = 2 SoC-'t(C) 
C = l  

Combining eqs. (19-22) we obtain 

1 SoC-'QcC[ '2' N(u)(l - &)"-'?A! 

O - - QAi - c=i = C!  u = l  (u - C ) !  

] (23) 
N(U)(l - Q)u-cv! 

(U - C ) !  + 
Incorporating eqs. (17) and (18) into this expression and inverting t,he 
summation order, we have 

1 u-I 

u u = l  
so = - c P(1 - P)--l x 

(1 - p)'-1 u SoC-'QC-1(1 - Qy-qJ! c (24) 
+ u c-1 (U - C ) !  (C - l)! 

The sums over C, which may be evaluated immediately from the binomial 
expansion, are of the form 

u(l - Q + 



2824 E. MENEFEE AND J. J. BARmLOVICH 

Hence, eq. (24) now becomes 
u-I 

So = ( P / U )  c (1 - P)u-'[2 + (U - 1 - u)P](l - Q + QSo)u- l~  
u= 1 

+ (1 - P)'-'(l - Q + &So)'-' (25) 
If we define a = (1 - P)(1 - Q + &So), then eq. (25) becomes 

so = aU-' + ( P / U )  x 
u- 1 u- 1 

V = l  u = 1  
- 1)P] c uau-' - P c uaau-'} (26) 

To evaluate the sums over u, we note that 
N 

u=1 
c au = [a/(l - a)J(l  - a") 

and obtain the two required sums by successive differentiation with respect 
to a. Designating the sums as UI and u2, we have finally for So, 

so = a U - 1  + (P /U) (  [2 + (U - 1 ) P l U I  - Pa21 

u1 = (1 - a)-2[1 - UaU-' + (U - l)aU] 

(28) 

where 

u2 = (1 - a)-"1 + a - u2aU-' + 
(2U2 - 2 u  - l)aU - (U - 1)2UU+'] 

and 

a = (1 - P)(1 - Q + &So) 

Before proceeding with an examination of this exact closed-form solution, 
we must connect the sterile coefficient So with the actual soluble fraction 
S = 1 - G. The soluble fraction is the weight fraction of all molecules 
which have no crosslinks at  all or only sterile ones. If we assume the molec- 
ular weight per amino acid monomer unit to have an average value m, then 

u u  

u - I  c-0 
S = c c nc(u)umfi'oc/Alm (29) 

For So, corresponding to eq. (23) we have 
u 

So = u-1 c C=l 5 nc(u)CSoC-'/QA1 (30) 

Putting in eqs. (19) and (20) for n, and again evaluating the sums over 
C by the binomial expansion, we obtain 

U 

u- 1 
S = C uN(u)(1 - Q + Qfi'o)"/Ai (31 1 
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and 

Therefore 

S = So(1 - Q + &So) (33) 

For small Q t8his result reduces t,o the usual approximation that S = So. 

Comparison of Exact and Approximate Solutions 

Neither eq. (11) nor eq. (28) permits an easy solution for G or S with 
a given set of the independent variables P, Q, and U. However, of the 
two, eq. (11) is the simpler because the variables occur in pairs; that is, as 
P U  or as QU = 6. We prefer therefore to use eq. (11) when conditions of 
the problem permit it, and now proceed to determine what these conditions 
are. Probably the clearest way to compare the two equations is to examine 
a table of values for G computed over a range of P, Q, and U. These 
results are given in Table I, where G for a specific U is obtained from eq. 
(28) and that for U = OJ from eq. (11). Sets of numbers to be compared 
are those within each group of four. We see the disparity in G increasing 
as P / &  increases and as 6 decreases. The approximation [eq. ( l l ) ]  is 
certainly safe for 6 2 4 and P/Q < 0.1, and for nearly all. cases in which 

TABLE I 
Comparison of G Calculated for Various U Values From Equation (28) With G Calculated 

for U + m from Equation (11) 

G calculated for various P/Q or PU/8 

6 U 0.05 0.1 0.4 1.0 

10 
20 

100 
m 

0.748 
0.759 
0.766 
0.768 

0.713 
0.730 
0.737 
0.739 

0.450 
0.513 
0.552 
0.560 

0 
0 
0.145 
0.184 

10 
20 

100 

0.963 
0.960 
0.958 
0.958- 

0.937 
0.937 
0.936 
0.936 

0.720 
0.760 
0.782 
0.788 

0 
0.238 
0.417 
0.452 W 

10 
10 
10 
10 

10 
20 

100 
m 

0.988 
0.988 
0.989 
0.989 

0.971 
0.973 
0.975 
0.976 

0.702 
0.809 
0.857 
0.866 

0 
0 
0.487 
0.559 

40 
40 
40 
40 

10 
20 

100 
m 

0 
0 
0.191 
0.604 

- 
0.995 
0.995 

- 
0.987 
0.988 

- 
0.852 
0.901 
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U 2 100. We will consider the approximate form to be adequate for this 
series of papers. However, there is evidence (see IV) that wool keratin 
contains a large fraction in which U is of the order of 25. Hence, for more 
exact studies later on, we may have to use the rigorous solution [eq. (28)]. 

Table I1 gives a series of G values computed from eq. (11) for a range of 
6 and PU. Although interpolation in this table is not difficult, a desirable 
alternative is an approximate explicit solution for G in terms of PU and 6; 
this we have not yet been able to devise in a simple enough form. 
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R6sum6 
Nous avons d6duit des expressions pour d6terminer la quantit6 soluble aprbs chaque 

rupture de r6ticulation ou chaque scission de chaine dans le cas d’un polymbre r6thul6 
poss6dant une distribution uniforme du poids mol6cuhie. On a obtenu d e w  rkultats 
de forme voisine. L’un est une forme approchb bask  SIX le formaliime de Charlesby et 
est utilisable pour la plupart des besoins. L’autre, bas6 sur la distribution de la d6gra- 
dation suivant Montroll et Simha, est exacte mais plut8t incommode. Nous comparons les 
r6sultats num6riques A partir de chaque essai. 

Zusammenfassung 
Fur ein vernetztes Polymeres mit einheitlicher Molekulargewichtaverteilung werden 

Ausdrucke fur den loslichen Anteil nach einem beliebigen Betrag an Vernetzungsstellen- 
oder Kettenspaltung abgeleitet. Es werde zwei Ergebnisse in geschlossener Form er- 
halten. Dss eine ist eine auf dem Formalismus von Charlesby beruhende Naherung, 
welche fur die meisten Zwecke brauchbar ist. Das andere, auf einer Abbauverteilung 
von Montroll und Simha beruhende ist streng, jedoch ziemlich schwer ausxuwerten. 
Numerische Ergebnisse beider Beziehungen werden verglichen. 
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